Winkel#=ACOS# (Zahl#)


Beschreibung
Diese Funktion berechnet den Winkel aus einem Kosinuswert. Es ist somit die Umkehrfunktion für Kosinus. Mathematiker nennen es Arcuskosinus.

Man kann den Kosinuswert ausrechnen, indem man die Ankathete eines rechtwinkligen Dreiecks durch die Hypotenuse teilt. Aus diesem Wert wird danach der Winkel berechnet.

Zur Erklärung: Ankathete ist die Seite des Dreiecks, die neben dem gesuchten Winkel liegt. Hypotenuse ist die Seite mit der größten Länge.


Parameter
Zahl = eine beliebige Zahl, die zwischen -1 und 1 liegen muss


Rückgabewert
Kleinster Winkel in Grad. Die Grafik zeigt den Zusammenhang zwischen Winkel und Kosinuswert.


Beispiel
Dieses Beispiel demonstriert die Berechnung eines Winkels:

GRAPHICS 640,480
REPEAT
   CLS
   x# = MOUSEX()
   y# = MOUSEY()
   r# = SQR((x#*x#)+(y#*y#))

   COLOR 104,104,104
   LINE x#,0,x#,y#
   LINE 0,y#,x#,y#
   LOCATE x#+10,y#-10 : WRITE "X=" : PRINT x#
   LOCATE x#-10,y#+10 : WRITE "Y=" : PRINT y#

   ORIGIN 0,0
   COLOR 255,255,255
   LINE 0,0,x#,y#
   theta# = ACOS(x#/r#)
   LOCATE 60,10 : WRITE "Winkel:" : PRINT theta

   FOR degrees#=0 TO theta#
      cy=SIN(degrees#)*50
      cx=COS(degrees#)*50
      PLOT cx,cy
   NEXT
   FLIP
UNTIL KEYDOWN(1)


Siehe auch
ASIN, ATAN, ATAN2, COS, SIN, TAN